题目内容

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = =

【答案】解:(Ⅰ)由题意, = ×(1+2+3+4+5+6+7)=4, = ×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,
= = =0.5,
= =4.3﹣0.5×4=2.3.
∴y关于t的线性回归方程为 =0.5t+2.3;
(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.
将2015年的年份代号t=9代入 =0.5t+2.3,得:
=0.5×9+2.3=6.8,
故预测该地区2015年农村居民家庭人均纯收入为6.8千元.
【解析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网