题目内容
【题目】已知函数 .
(1)讨论函数在
上的单调性;
(2)若,当
时,
,且
有唯一零点,证明:
.
【答案】(1)见解析;(2)证明见解析
【解析】
(1)求导后得,再对
分四种情况讨论可得函数的单调性;
(2)令=0,可知
在
上有唯一零点
,所以
①, 要使
在
上恒成立,且
有唯一解,只需
,即
②,再联立①②可知,
,然后构造函数,利用导数可得.
(1)依题意,
若,则
,
故函数在
上单调递增;
若,令
,解得
;
若,则
,则
,
函数在
上单调递增;
若,则
,则
,
则函数在
上单调递减;
若,则
,则函数
在
上单调递增,在
上单调递减;
综上所述,时,函数
在
上单调递增,
时,函数
在
上单调递减,
时,函数
在
上单调递增,在
上单调递减;
(2)依题意,,而
,
令,解得
,
因为,故
,
故在
上有唯一零点
;
又,
故 ①,
要使在
上恒成立,且
有唯一解,
只需,即
②,
由①②可知,
令
显然在
上单调递减,
因为,
故,
又在
上单调递增,
故必有
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了
件,测量这些零件的质量指标值,得结果如下表:
甲企业:
分组 | |||||||
频数 | 5 |
乙企业:
分组 | |||||||
频数 | 5 | 5 |
(1)已知甲企业的件零件质量指标值的样本方差
,该企业生产的零件质量指标值X服从正态分布
,其中μ近似为质量指标值的样本平均数
(注:求
时,同一组中的数据用该组区间的中点值作代表),
近似为样本方差
,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于
的产品的概率.(精确到
)
(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过
的前提下认为两个企业生产的零件的质量有差异.
甲厂 | 乙厂 | 总计 | |
优质品 | |||
非优质品 | |||
总计 |
附:
参考数据:,
参考公式:若,则
,
,
;