题目内容
【题目】如图,四棱锥的底面是边长为2的菱形,底面.
(1)求证:平面;
(2)若,直线与平面所成的角为,求四棱锥的体积.
【答案】(1)证明见解析;(2)
【解析】
(1)通过AC⊥BD与PD⊥AC可得平面;
(2)由题先得出∠PBD是直线PB与平面ABCD所成的角,即∠PBD=45°,则可先求出菱形ABCD的面积,进而可得四棱锥P- ABCD的体积.
解:(1)因为四边形ABCD是菱形,所以AC⊥BD,
又因为PD⊥平面ABCD,平面ABCD,
所以PD⊥AC,又,
故AC⊥平面PBD;
(2)因为PD⊥平面ABCD,
所以∠PBD是直线PB与平面ABCD所成的角,
于是∠PBD=45°,
因此BD=PD=2.又AB= AD=2,
所以菱形ABCD的面积为,
故四棱锥P- ABCD的体积.
练习册系列答案
相关题目