题目内容
已知函数
,
(
)
(1)若函数
存在极值点,求实数b的取值范围;
(2)求函数
的单调区间;
(3)当
且
时,令
,
(
),
(
)为曲线y=
上的两动点,O为坐标原点,能否使得
是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332865736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332881656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332912405.png)
(1)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332928447.png)
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332943445.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332943392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332990400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303330061199.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333021291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333037559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333052334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333068572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333084481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333115530.png)
(1)
;(2)当
时,
,函数
的单调递增区间为
;
当
时,
,函数
的单调递减区间为
,单调递增区间为
.
(3)对任意给定的正实数
,曲线上总存在
两点,满足条件.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333130507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332990400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333177442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333193568.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333208388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333208414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333177442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333240524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333255588.png)
(3)对任意给定的正实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333271283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333286419.png)
试题分析:(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333286481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333318447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333286481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333349266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333364400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333380285.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333396467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333411283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333411392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333427389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333458442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333115530.png)
且斜边中点在y轴上,需要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303335521097.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333567362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333645267.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333692817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333318447.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333739874.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333754670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333130507.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333817802.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332990400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333162399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333177442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333193568.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333208388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333208414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333177442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333240524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333255588.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332943392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332990400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303339881254.png)
假设使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334004530.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334020589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334035508.png)
不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334051501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334066591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334082688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240303335521097.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333567362.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334113431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334129472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334144449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333567362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334191792.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334285545.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334503317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334690902.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334706613.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334722356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334129472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334753432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333567362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334784816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334800689.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334815846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334831904.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334831509.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334846483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334831509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334878711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334893546.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030332990400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334800689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333567362.png)
综上所述,对任意给定的正实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333271283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030333286419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030334971481.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目