题目内容

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
(Ⅰ);(Ⅱ) ;(Ⅲ)见解析.

试题分析:(Ⅰ)由已知条件“曲线处的切线相互平行”可知,曲线在这两处的切线的斜率相等,求出曲线的导数,根据求出的值及切线斜率;(Ⅱ)有已知条件“函数在区间上单调递减”可知,在区间上恒成立,得到,则有,依据二次函数在闭区间上的值域,求得函数在区间的值域是,从而得到;(Ⅲ)用反证法,先假设C1在点M处的切线与C2在点N处的切线平行,设,则有,分别代入函数与函数的导函数,求得①,结合P、Q两点是函数的图像C1与函数的图像C2的交点,则坐标满足曲线方程,将①化简得到,设,进行等量代换得到,存在大于1的实根,构造函数,结合导函数求得函数在区间是单调递减的,从而,得出矛盾.
试题解析:(Ⅰ)

∵在处的切线相互平行,
,即,解得
.
(Ⅱ)∵在区间上单调递减,
在区间上恒成立,
,即
,∴
.
(Ⅲ)
假设有可能平行,则存在使

不妨设
则方程存在大于1的实根,设
,∴,这与存在使矛盾.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网