题目内容

精英家教网如图,在三棱锥A-BCD中,AB,AC,AD两两互相垂直,AB=AC=AD=4,点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,当P,Q运动时,点M的轨迹把三棱锥A-BCD分成上、下两部分的体积之比等于
 
分析:由已知中三棱锥A-BCD中,AB,AC,AD两两互相垂直,AB=AC=AD=4,我们易计算出三棱锥A-BCD的体积,又由点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,我们可以判断M的轨迹与三棱锥转成的两个几何体的体积,进而得到答案.
解答:解:∵三棱锥A-BCD中,AB,AC,AD两两互相垂直,AB=AC=AD=4,
则棱锥A-BCD的体积V=
1
3
×
1
2
×4×4×4
=
32
3

又∵点P,Q分别在侧面ABC棱AD上运动,PQ=2,M为线段PQ中点,
∴点M的轨迹在以A为球心以1半径的球面上
则点M的轨迹把三棱锥A-BCD分成上、下两部分的体积之比为:
1
8
4
3
•π
:(
32
3
-
1
8
4
3
•π
)=π:(64-π)
故答案为:
π
64-π
点评:本题考查的知识点是棱锥的体积及球的体积,其中判断出M的轨迹在以A为球心以1半径的球面上是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网