题目内容

11.若一个直角三角形的周长为2,则它的面积的最大值等于$3-2\sqrt{2}$.

分析 设直角三角形的两直角边为a、b,斜边为c,因为L=a+b+c,c=$\sqrt{{a}^{2}+{b}^{2}}$,两次运用均值不等式即可求解.

解答 解:直角三角形的两直角边为a、b,斜边为c,面积为s,周长L=2,
由于a+b+$\sqrt{{a}^{2}+{b}^{2}}$=L≥2$\sqrt{ab}$+$\sqrt{2ab}$(当且仅当a=b时取等号),
∴$\sqrt{ab}$≤$\frac{L}{2+\sqrt{2}}$.
∴S=$\frac{1}{2}$ab≤$\frac{1}{2}$($\frac{L}{2+\sqrt{2}}$)2
=$\frac{1}{2}$•[$\frac{(2-\sqrt{2})L}{2}$]2=$\frac{3-2\sqrt{2}}{4}$L2=3-2$\sqrt{2}$.
故答案为:$3-2\sqrt{2}$.

点评 利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网