ÌâÄ¿ÄÚÈÝ

18£®ÎÒÃÇ°ÑÀëÐÄÂÊÏàµÈµÄÍÖÔ²°´³Æ֮Ϊ¡°Í¬»ùÍÖÔ²¡±£¬ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{m}_{1}^{2}}$+y2=1£¨m1£¾1£©ºÍÍÖÔ²C2£ºy2+$\frac{{x}^{2}}{{m}_{2}^{2}}$=1£¨0£¼m2£¼1£©Îª¡°Í¬»ùÍÖÔ²¡±£¬Ö±Ïßl£ºy=$\frac{\sqrt{3}}{2}$ÓëÇúÏßC1´Ó×óÖÁÓÒ½»ÓÚA¡¢DÁ½µã£¬ÓëÇúÏßC2´Ó×óÖÁÓÒ½»ÓÚB¡¢CÁ½µã£¬OΪ×ø±êÔ­µã£¬ÇÒ|AC|=$\frac{5}{4}$£¬ÔòÍÖÔ²C1¡¢C2µÄ½»µã¸öÊýΪ£¨¡¡¡¡£©
A£®4B£®2C£®0D£®ÎÞÊý¸ö

·ÖÎö ÔËÓÃÀëÐÄÂʹ«Ê½ºÍ½«Ö±Ïßy=$\frac{\sqrt{3}}{2}$·Ö±ð´úÈëC1£¬C2·½³Ì£¬ÇóµÃA£¬CÁ½µãµÄ×ø±ê£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽ£¬½â·½³Ì¿ÉµÃÍÖÔ²·½³Ì£¬ÔÙÇóÁ½ÍÖÔ²µÄ½»µã£¬¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£ºÓÉÓÚC1£¬C2µÄÀëÐÄÂÊÏàµÈ£¬Ôò$\frac{\sqrt{{{m}_{1}}^{2}-1}}{{m}_{1}}$=$\sqrt{1-{{m}_{2}}^{2}}$£¬
¼´ÓÐm1m2=1£¬
½«y=$\frac{\sqrt{3}}{2}$·Ö±ð´úÈëC1£¬C2·½³Ì£¬ÓÉ$\frac{{x}^{2}}{{{m}_{1}}^{2}}$+$\frac{3}{4}$=1⇒xA=-$\frac{1}{2}$m1£¬
ÓÉ$\frac{{x}^{2}}{{{m}_{2}}^{2}}$+$\frac{3}{4}$=1⇒xC=$\frac{1}{2}$m2£¬
ÔòA£¨-$\frac{1}{2}$m1£¬$\frac{\sqrt{3}}{2}$£©£¬C£¨$\frac{1}{2}$m2£¬$\frac{\sqrt{3}}{2}$£©£¬
ÓÖ|AC|=$\frac{5}{4}$£¬Ôò$\frac{1}{2}$m1+$\frac{1}{2}$m2=$\frac{5}{4}$£¬
ÓÖm1m2=1£¬½âµÃm1=2£¬m2=$\frac{1}{2}$£¬
ÔòÓÐC1£¬C2µÄ·½³Ì·Ö±ðΪ$\frac{{x}^{2}}{4}$+y2=1£¬4x2+y2=1£¬
½âµÃ½»µãΪ£¨0£¬1£©£¬£¨0£¬-1£©£®
¹ÊËüÃǵĽ»µã¸öÊýΪ2£®
¹ÊÑ¡B£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓã¬Ö÷Òª¿¼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£ºÀëÐÄÂʵÄÇ󷨣¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø