题目内容
【题目】如图,四棱锥S﹣ABCD中,M是SB的中点,AB∥CD,BC⊥CD,且AB=BC=2,CD=SD=1,又SD⊥面SAB.
(1)证明:CD⊥SD;
(2)证明:CM∥面SAD;
(3)求四棱锥S﹣ABCD的体积.
【答案】(1)证明见解析 (2)证明见解析(3).
【解析】
(1)由平面证得,结合,证得
(2)取的中点,连接,通过证明四边形是平行四边形,证得,由此证得平面.
(3)通过求,结合,求得四棱锥的体积.
(1)证明:由SD⊥面SAB,AB面SAB,
所以SD⊥AB,又AB∥CD,
所以CD⊥SD;
(2)取SA中点N,连接ND,NM,
则NM∥AB,且MN,AB∥CD,
所以NMCD是平行四边形,
ND∥MC,且ND平面SAD,MC平面SAD,
所以CM∥面SAD;
(3)VS﹣ABCD:VS﹣ABD=SABCD:S△ABD=3:2,
过D作DH⊥AB,交于H,由题意得,BD=AD,
在Rt△DSA,Rt△DSB中,SA=SB2.
所以,,/span>
四棱锥S﹣ABCD的体积为:.
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.