题目内容
【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________.
【答案】
【解析】
试题分析:由于圆C的方程为(x-4)2+y2=1,由题意可知,只需(x-4)2+y2=4与直线y=kx-2有公共点即可。解:∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x-4)2+y2=4与直线y=kx-2有公共点即可.设圆心C(4,0)到直线y=kx-2的距离为d,
即3k2≤4k,∴0≤k≤,故可知参数k的最大值为
练习册系列答案
相关题目