题目内容

【题目】已知函数f (x)=x3ax2bxc,下列结论中错误的是( )

A. x0Rf (x0)0

B. 函数yf (x)的图象是中心对称图形

C. x0f (x)的极小值点,则f (x)在区间(∞x0)上单调递减

D. x0f (x)的极值点,则f ′(x0)0

【答案】C

【解析】试题分析:由于三次函数的三次项系数为正值,当x→时,函数值,当x→时,函数值也,又三次函数的图象是连续不断的,故一定穿过x轴,即一定x0∈Rf(x0)0,选项A中的结论正确;函数f(x)的解析式可以通过配方的方法化为形如(xm)3n(xm)h的形式,通过平移函数图象,函数的解析式可以化为yx3nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,选项B中的结论正确;由于三次函数的三次项系数为正值,故函数如果存在极值点x1x2,则极小值点x2x1,即函数在-到极小值点的区间上是先递增后递减的,所以选项C中的结论错误;根据导数与极值的关系,显然选项D中的结论正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网