题目内容
【题目】椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于、两点,为坐标原点,若,求的面积.
【答案】(1);(2).
【解析】
(1)由题意可知点在椭圆上,利用椭圆的定义可求得值,结合的值可求得的值,进而可求得椭圆的标准方程;
(2)设、,设直线的方程为,将直线的方程与椭圆的方程联立,列出韦达定理,由得出,结合韦达定理求得的值,再由三角形的面积公式可求得的面积.
(1)依题意有,椭圆的焦点坐标为,且点在椭圆上,
由椭圆的定义可得,
即,,
因此,椭圆的方程为;
(2)设、,由,得.
由题意直线的斜率存在,所以设直线的方程为,
代入椭圆方程整理,得,
所以,.
将代入上式可得,,解得.
所以的面积.
【题目】某市教育局为了监控某校高一年级的素质教育过程,从该校高一年级16个班随机抽取了16个样本成绩,制表如下:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
测评成绩 | 95 | 96 | 96 | 90 | 95 | 98 | 98 | 97 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
测评成绩 | 97 | 95 | 96 | 98 | 99 | 96 | 99 | 96 |
令为抽取的第个学生的素质教育测评成绩,,经计算得,,,,以下计算精确到0.01.
(1)求的相关系数,并回答与是否可以认为具有较强的相关性;
(2)在抽取的样本成绩中,如果出现了在之外的成绩,就认为本学期的素质教育过程可能出现了异常情况,需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议,从该校抽样的结果来看,是否需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议?
附:样本的相关系数,若,则可以认为两个变量具有较强的线性相关性.
【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于“追光族”与“性别”有关;
属于“追光族” | 属于“观望者” | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于“追光族”现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |