题目内容
【题目】四面体P﹣ABC中,若PA=PB=PC,则点P在平面ABC内的射影点O是三角形ABC的( )
A.内心
B.外心
C.垂心
D.重心
【答案】B
【解析】解:设P在平面ABC射影为O, ∵PA=PB=PC,PO=PO=PO,(公用边),∠POA=∠POB=∠POC=90°,
∴△POA≌△POB≌△POC,
∴OA=OB=OC,
∴O是三角形ABC的外心.
故选:B.
【考点精析】解答此题的关键在于理解棱锥的结构特征的相关知识,掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
练习册系列答案
相关题目
【题目】有一组实验数据如下表所示:
x | 1 | 2 | 3 | 4 | 5 |
y | 1.5 | 5.9 | 13.4 | 24.1 | 37 |
下列所给函数模型较适合的是( )
A. y=logax(a>1) B. y=ax+b(a>1)
C. y=ax2+b(a>0) D. y=logax+b(a>1)