题目内容
【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.
(1)求椭圆的方程;
(2)过椭圆的右焦点作直线交椭圆于、两点,交轴于点,若,,求证:为定值.
【答案】(1)(2)见证明
【解析】
(1)根据椭圆的焦点位置及抛物线的焦点坐标,设出其方程,利用顶点和离心率确定其中的参数,即可求解其标准方程;
(2)写出椭圆的右焦点,然后,设出直线的方程和点的坐标,联立方程组,结合向量的坐标运算,即可求解.
(1)设椭圆的方程为,则由题意知
∴.即∴
∴椭圆的方程为
(2)设、、点的坐标分别为,,.
又易知点的坐标为
显然直线存在的斜率,设直线的斜率为,则直线的方程是
将直线的方程代入到椭圆的方程中,消去并整理得
,∴,
∵,
∴将各点坐标代入得,
∴
练习册系列答案
相关题目
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为
=;相关指数R2=.