题目内容

如图,已知边长为8米的正方形钢板有一个角锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,将在五边形ABCDE内截取一个矩形块BNPM,使点P在边DE上.则矩形BNPM面积的最大值为    平方米.
【答案】分析:利用三角形的相似,可得函数的解析式及定义域,表示出面积,利用配方法,可得矩形BNPM面积的最大值.
解答:解:作PQ⊥AF于Q,所以PQ=8-y,EQ=x-4,
在△EDF中,=,所以=
所以y=-x+10,定义域为{x|4≤x≤8}.
设矩形BNPM的面积为S,则S(x)=xy=x(10-)=-(x-10)2+50.
所以S(x)是关于x的二次函数,且其开口向下,对称轴为x=10
所以当x∈[4,8],S(x)单调递增.
所以当x=8米时,矩形BNPM面积取得最大值48平方米.
故答案为:48.
点评:本题考查函数解析式的确定,考查配方法求函数的最值,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网