题目内容

【题目】四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.

(1)求证:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角.

【答案】
(1)证明:∵四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,

∴PA⊥AD,PA⊥AB,又AD∩AB=A,AB⊥BC,

∴PA⊥平面ABCD,又BC面ABCD,∴PA⊥BC,

∵AB∩PA=A,∴BC⊥面PAB,

∴BC⊥AF,

∵△PAB是以A为直角顶点的等腰直角三角形,F是PB中点,

∴AF⊥PB,

又PB∩BC=B,∴AF⊥平面PBC,

∵EF平面PBC,∴AF⊥EF


(2)解:以A为原点,AD为x轴,AB为y轴,P为z轴,

建立空间直角坐标系,

设AB=1,则A(0,0,0),B(0,1,0),C(1,1,0),P(0,0,1),

=(0,0,1), =(1,1,0),

设平面APC的法向量 =(x,y,z),

,取x=1,得 =(1,﹣1,0),

=(0,1,﹣1), =(1,1,﹣1),

设平面PBC的法向量 =(a,b,c),

,取b=1,得 =(0,1,1),

|cos< >|=| |=

∴< >=60°,

∴二面角A﹣PC﹣B的平面角为60°.


【解析】(1)由已知得PA⊥AD,PA⊥AB,AB⊥BC,从而PA⊥BC,进而BC⊥面PAB,又AF⊥PB,由此能证明AF⊥EF.(2)以A为原点,AD为x轴,AB为y轴,P为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣PC﹣B的平面角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网