题目内容
A是△BCD平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
(1)见解析 (2)45°
解析
如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.(Ⅰ)求证:AB⊥CQ;(Ⅱ)求BP的长;(Ⅲ)求直线AP与平面BCD所成的角.
如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。(1)求证:OB⊥AC;(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。
如图,在直三棱柱中-A BC中,AB AC,AB=AC=2,=4,点D是BC的中点.(1)求异面直线与所成角的余弦值;(2)求平面与所成二面角的正弦值.
(满分14分)如图在三棱锥中,分别为棱的中点,已知,求证(1)直线平面;(2)平面平面.
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
如图,在长方体中,. (1)若点在对角线上移动,求证:⊥;(2)当为棱中点时,求点到平面的距离。
如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.(1)求证:BD⊥AB1;(2)求二面角B—AD—B1的余弦值.
如图,在三棱柱中,侧棱垂直于底面,,,、分别为、的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.