题目内容

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

【答案】(1)见解析(2)

【解析】试题分析:(1)直二面角定义可得,再根据已知条件,由线面垂直判定定理得平面,即得;另一方面,由计算可得;因此由线面垂直判定定理得平面,即得.(2)利用等体积法,将三棱锥的体积转化为,再根据椎体体积公式得,解得为点到平面的距离.

试题解析:(Ⅰ)证明:因为二面角的大小为,则

,故平面,又平面,所以

在直角梯形中,

所以,又

所以,即;又,故平面

因为平面,故.

(Ⅱ)设点到平面的距离为,因为,且

,做点到平面的距离为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网