题目内容
【题目】△ABC中,A(0,1),AB边上的高线方程为x+2y-4=0,AC边上的中线方程为2x+y-3=0,求AB,BC,AC边所在的直线方程
【答案】,,
【解析】
试题分析:先找出AB边上的高线方程的斜率,根据两直线垂直时斜率乘积为-1求出直线AB的斜率和A的坐标,即可写出直线AB的方程;把直线AB与AC边上的中线方程联立求出交点B的坐标,然后设出AC的中点D和C的坐标,根据中点坐标公式列出方程组,求出解即可得到C的坐标,利用两点坐标写出直线BC的方程;由A和C的坐标写出直线AC的方程即可
试题解析:直线AB的斜率为2,∴AB边所在的直线方程为,
直线AB与AC边中线的方程交点为
设AC边中点D(x1,3-2x1),C(4-2y1,y1),∵D为AC的中点,由中点坐标公式得
边所在的直线方程为;
AC边所在的直线方程为y=1.
练习册系列答案
相关题目
【题目】在某省举办的娱乐节目“快乐向前冲”的海选过程中设置了几名导师,负责对每批初选合格的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加“待定”赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加“待定”赛的选手能够进入第二轮比赛的概率如下表:
参赛选手成绩所在区间 | ||
每名选手能够进入第二轮的概率 |
假设每名选手能否通过“待定”赛相互独立,现有4名选手的成绩分别为(单位:分)43,45,52,58,记这4名选手在“待定”赛中通过的人数为随机变量,求的分布列和数学期望.