题目内容
【题目】设p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若q是p的必要不充分条件,求实数a的取值范围.
【答案】(1)(2,4).(2)
【解析】试题分析:(1)首先,当时,求出不等式的解集,为真,即求两个集合的交集;
(2)首先根据等价命题转化为是的必要不充分条件,那么根据集合得出命题表示的集合是命题表示集合的子集,求出的取值范围.
试题解析:当a=1时,解得1<x<4,
即p为真时实数x的取值范围是1<x<4.
若p∧q为真,则p真且q真,
所以实数x的取值范围是(2,4).
(2)是的必要不充分条件即p是q的必要不充分条件,
设A={x|p(x)},B={x|q(x)},则BA,
由x2-5ax+4a2<0得(x-4a)(x-a)<0,
∵a>0,∴A=(a,4a),
又B=(2,5], 则a≤2且4a>5,解得<a≤2.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )