题目内容

已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.
[-2,0]
当x≤0时,f(x)=-x2+2x=-(x-1)2+1≤0,所以|f(x)|≥ax,化简为x2-2x≥ax,即x2≥(a+2)x,因为x≤0,所以a+2≥x恒成立,所以a≥-2;当x>0时,f(x)=ln(x+1)>0,所以|f(x)|≥ax化简为ln(x+1)>ax恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax恒成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网