题目内容
【题目】已知椭圆C的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值;
【答案】(1) ; (2).
【解析】
(1)根据椭圆离心率等于,它的一个短轴端点恰好是抛物线的焦点,结合性质,列出关于 、 、的方程组,求出 、,即可得结果;(2)设,的方程为,联立方程得,四边形的面积,从而可得结果.
(1)设C方程为,
因为椭圆一个短轴端点恰好是抛物线的焦点。
所以.由,,得a=4 ,
∴椭圆C的方程为.
(2)设,,直线AB的方程为,
代入,得, 由△>0,解得﹣4<t<4
由韦达定理得,.
∴.
由此可得:四边形APBQ的面积
∴当t=0时,.
【题目】为调查银川市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:
(1)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?
(2)在(1)中抽取的6人中任选2人,求恰有一名女生的概率;
(3)你能否在犯错误的概率不超过0.010的前提下,认为该校高中生是否愿意提供志愿者服务与性别有关?
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
独立性检验统计量其中
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)