题目内容
已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|





(1)求点C的轨迹E的方程;
(2)设(1)中曲线E的左、右焦点分别为F1、F2,过点F2的直线l交曲线E于P、Q两点,求△F1PQ面积的最大值,并求出取最大值时直线l的方程.
解:(1)设C(x,y),则G(,
).
∵=λ
(λ∈R),∴GM∥AB.又M是x轴上一点,则M(
,0),
又∵||=|
|,∴(
=
.整理得
+y2=1(x≠0).
(2)由(1),知F1(-,0),F2(
,0).
设直线l的方程为x=ty+,由(1),知x≠0,∴l不过点(0,±1).∴t≠±
.
设P(x1,y1),Q(x2,y2),将x=ty+代入x2+3y2=3,(t2+3)y2+2
ty-1=0.∴Δ=8t2+4(t2+3)=12(t2+1)>0恒成立.∴y1+y2=
,y1·y2=
.
∴|y1-y2|==
=
.
∴=
|F1F2|·|y1-y2|=
|y1-y2|=2
(t≠±
).
∴=
≤
=
.
当且仅当t2+1=2,即t=±1时取“=”.
∴△F1PQ的最大值为3,此时直线l的方程为x±y-2=0.

练习册系列答案
相关题目
已知点G是△ABC的重心,点P是△GBC内一点,若
=λ
+μ
,则λ+μ的取值范围是( )
AP |
AB |
AC |
A、(
| ||
B、(
| ||
C、(1,
| ||
D、(1,2) |