ÌâÄ¿ÄÚÈÝ
¸ø³öÏÂÁÐÁù¸öÃüÌ⣺
¢Ùsin1£¼3sin
£¼5sin
¢ÚÈôf'£¨x0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚx=x0È¡µÃ¼«Öµ£»
¢Û¡°?x0¡ÊR£¬Ê¹µÃex0£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬¾ùÓÐex¡Ý0¡±£»
¢ÜÒÑÖªµãGÊÇ¡÷ABCµÄÖØÐÄ£¬¹ýG×÷Ö±ÏßÓëAB£¬ACÁ½±ß·Ö±ð½»ÓÚM£¬NÁ½µã£¬ÇÒ
=x
£¬
=y
£¬Ôò
+
=3£»
¢ÝÒÑÖªa=
sinxdx£¬µã(
£¬a)µ½Ö±Ïß
x-y+1=0µÄ¾àÀëΪ1£»
¢ÞÈô|x+3|+|x-1|¡Üa2-3a£¬¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýa¡Ü-1£¬»òa¡Ý4£»
ÆäÖÐÕæÃüÌâÊÇ
¢Ùsin1£¼3sin
1 |
3 |
1 |
5 |
¢ÚÈôf'£¨x0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚx=x0È¡µÃ¼«Öµ£»
¢Û¡°?x0¡ÊR£¬Ê¹µÃex0£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬¾ùÓÐex¡Ý0¡±£»
¢ÜÒÑÖªµãGÊÇ¡÷ABCµÄÖØÐÄ£¬¹ýG×÷Ö±ÏßÓëAB£¬ACÁ½±ß·Ö±ð½»ÓÚM£¬NÁ½µã£¬ÇÒ
AM |
AB |
AN |
AC |
1 |
x |
1 |
y |
¢ÝÒÑÖªa=
¡Ò | ¦Ð 0 |
3 |
3 |
¢ÞÈô|x+3|+|x-1|¡Üa2-3a£¬¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýa¡Ü-1£¬»òa¡Ý4£»
ÆäÖÐÕæÃüÌâÊÇ
¢Ù¢Û¢Ü¢Ý
¢Ù¢Û¢Ü¢Ý
£¨°ÑÄãÈÏΪÕæÃüÌâÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©·ÖÎö£º¶ÔÓÚ¢Ù¿¼²éº¯Êýy=xsin
£¬¸Ãº¯ÊýÔÚ£¨
£¬+¡Þ£©Éϵ¥µ÷ÐÔ£¬¼´¿ÉÅж¨Õæ¼Ù£¬¶ÔÓÚ¢Úy=x3ÔÚx=0´¦Ã»Óм«Öµ£¬¶ÔÓÚ¢Û¸ù¾ÝÃüÌâµÄ·ñ¶¨½«Ìõ¼þºÍ½áÂÛͬʱ·ñ¶¨£¬¿É½øÐÐÅж¨Õæ¼Ù£¬¶ÔÓڢܸù¾ÝÏòÁ¿µÄ¹²Ï߶¨Àí½øÐÐÇó½â£¬¶ÔÓÚ¢ÝÏȸù¾Ý¶¨»ý·ÖÇó³öa£¬È»ºóÀûÓõ㵽ֱÏߵľàÀ빫ʽ½øÐÐÇó½â£¬¶ÔÓÚ¢Þ|x+3|+|x-1|ÎÞ×î´óÖµ£¬²»´æÔÚaʹ֮³ÉÁ¢£®
1 |
x |
¦Ð |
4 |
½â´ð£º½â£º¢Ù¿¼²ìº¯Êýy=xsin
£¬¸Ãº¯ÊýÔÚ£¨
£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬¶ø1£¼3£¼5£¬Ôòsin1£¼3sin
£¼5sin
£¬¹ÊÕýÈ·£»
¢ÚÈôf'£¨x0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚx=x0²»Ò»¶¨È¡µÃ¼«Öµ£¬Èçy=x3ÔÚx=0´¦Ã»Óм«Öµ£¬¹Ê²»ÕýÈ·£»
¢Û¡°?x0¡ÊR£¬Ê¹µÃex0£¼0¡±µÄ·ñ¶¨½«Ìõ¼þºÍ½áÂÛͬʱ·ñ¶¨£¬Ôò£º¡°?x¡ÊR£¬¾ùÓÐex¡Ý0¡±£¬¹ÊÕýÈ·£»
¢Ü¸ù¾ÝÌâÒâGΪÈý½ÇÐεÄÖØÐÄ£¬
=
£¨
+
£©£¬
=
-
=
£¨
+
£©-x
=(
-x)
+
£¬
=
-
=y
-
=y
-
(
+
)
=(y-
)
-
£¬
ÓÉÓÚ
Óë
¹²Ïߣ¬¸ù¾Ý¹²ÏßÏòÁ¿»ù±¾¶¨ÀíÖª£¬´æÔÚʵÊý¦Ë£¬Ê¹µÃ
=¦Ë
£¬
¼´ (
-x)
+
¦Ë[(y-
)
-
]£¬
¼´
¡à
=
¼´x+y-3xy=0
Á½±ßͬ³ýÒÔxyÕûÀíµÃ
+
=3£¬¹ÊÕýÈ·£»
¢Ý¶¨»ý·Ö
sinxdx=£¨-cosx£©|0¦Ð=1+1=2£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ¿Éµã(
£¬2)µ½Ö±Ïß
x-y+1=0µÄ¾àÀëΪ1£¬¹ÊÕýÈ·£»
¢ÞÈô|x+3|+|x-1|¡Üa2-3a£¬¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬Ôòa2-3a¡Ý£¨|x+3|+|x-1|£©max£¬¶ø|x+3|+|x-1|ÎÞ×î´óÖµ£¬¹Ê²»ÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý
1 |
x |
¦Ð |
4 |
1 |
3 |
1 |
5 |
¢ÚÈôf'£¨x0£©=0£¬Ôòº¯Êýy=f£¨x£©ÔÚx=x0²»Ò»¶¨È¡µÃ¼«Öµ£¬Èçy=x3ÔÚx=0´¦Ã»Óм«Öµ£¬¹Ê²»ÕýÈ·£»
¢Û¡°?x0¡ÊR£¬Ê¹µÃex0£¼0¡±µÄ·ñ¶¨½«Ìõ¼þºÍ½áÂÛͬʱ·ñ¶¨£¬Ôò£º¡°?x¡ÊR£¬¾ùÓÐex¡Ý0¡±£¬¹ÊÕýÈ·£»
¢Ü¸ù¾ÝÌâÒâGΪÈý½ÇÐεÄÖØÐÄ£¬
AG |
1 |
3 |
AB |
AC |
MG |
AG |
AM |
1 |
3 |
AB |
AC |
AB |
1 |
3 |
AB |
1 |
3 |
AC |
GN |
AN |
AG |
AC |
AG |
=y
AC |
1 |
3 |
AB |
AC |
=(y-
1 |
3 |
AC |
1 |
3 |
AB |
ÓÉÓÚ
MG |
GN |
MG |
GN |
¼´ (
1 |
3 |
AB |
1 |
3 |
AC |
1 |
3 |
AC |
1 |
3 |
AB |
¼´
|
¡à
| ||
-
|
| ||
y-
|
¼´x+y-3xy=0
Á½±ßͬ³ýÒÔxyÕûÀíµÃ
1 |
x |
1 |
y |
¢Ý¶¨»ý·Ö
¡Ò | ¦Ð 0 |
3 |
3 |
¢ÞÈô|x+3|+|x-1|¡Üa2-3a£¬¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬Ôòa2-3a¡Ý£¨|x+3|+|x-1|£©max£¬¶ø|x+3|+|x-1|ÎÞ×î´óÖµ£¬¹Ê²»ÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯ÊýÖµµÄ´óС±È½Ï¡¢¼«Öµ´æÔÚµÄÌõ¼þ¡¢¶¨»ý·ÖºÍµãµ½Ö±ÏߵľàÀë¡¢ºã³ÉÁ¢µÈÓйØÎÊÌ⣬ÊÇÒ»µÀ×ÛºÏÌ⣬¿¼²éµÄ֪ʶµã½Ï¶à£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿