题目内容
【题目】小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).
(1)大货车运输到第几年年底,该车运输累计收入超过总支出?
(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)
【答案】
(1)解:设大货车运输到第x年年底,该车运输累计收入与总支出的差为y万元,
则y=25x﹣[6x+x(x﹣1)]﹣50=﹣x2+20x﹣50(0<x≤10,x∈N)
由﹣x2+20x﹣50>0,可得10﹣5 <x<10+5
∵2<10﹣5 <3,故从第3年,该车运输累计收入超过总支出;
(2)∵利润=累计收入+销售收入﹣总支出,
∴二手车出售后,小张的年平均利润为 =19﹣(x+ )≤19﹣10=9
当且仅当x=5时,等号成立
∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.
【解析】(1)先计算该车运输累计收入与总支出的差,再由题意可得含有x的不等式,解不等式可得答案;(2)先计算小张获得的年平均利润,再利用基本不等式可得小张获得的年平均利润最大值,进而可得答案.
【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于70为合格品,小于70为次品.现随机抽取这种芯片共120件进行检测,检测结果统计如表:
测试指标 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
芯片数量(件) | 8 | 22 | 45 | 37 | 8 |
已知生产一件芯片,若是合格品可盈利400元,若是次品则亏损50元.
(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产3件芯片所获得的利润不少于700元的概率.
(Ⅱ)记ξ为生产4件芯片所得的总利润,求随机变量ξ的分布列和数学期望.