题目内容
用数学归纳法证明对任何正整数n有
+
+
+
+…+
=
.
1 |
3 |
1 |
15 |
1 |
35 |
1 |
63 |
1 |
4n2-1 |
n |
2n+1 |
证明:①当n=1时,左边=
,右边=
=
,
∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
+
+
+
+…+
=
,
则当n=k+1时,
+
+
+
+…+
+
=
+
=
+
=
=
=
.
∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.
1 |
3 |
1 |
2+1 |
1 |
3 |
∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
1 |
3 |
1 |
15 |
1 |
35 |
1 |
63 |
1 |
4k2-1 |
k |
2k+1 |
则当n=k+1时,
1 |
3 |
1 |
15 |
1 |
35 |
1 |
63 |
1 |
4k2-1 |
1 |
4(k+1)2-1 |
=
k |
2k+1 |
1 |
4(k+1)2-1 |
=
k |
2k+1 |
1 |
(2k+3)(2k+1) |
=
2k2+3k+1 |
(2k+3)(2k+1) |
=
(k+1)(2k+1) |
(2k+3)(2k+1) |
=
k+1 |
2(k+1)+1 |
∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.
练习册系列答案
相关题目