题目内容

【题目】如图,在直三棱柱中, 中点, 交于点

Ⅰ)求证: 平面

Ⅱ)求证: 平面

Ⅲ)在线段上是否存在点,使得?请说明理由.

【答案】见解析见解析)当中点时,

【解析】试题分析:(Ⅰ)证明:连结OD,可证OD为△A1BC的中位线,可得OD∥A1C,即可判定A1C∥平面AB1D.(Ⅱ)在直三棱柱ABC-A1B1C1中,可证AC⊥平面AA1B1B,从而可得AC⊥A1B,又A1B⊥AB1,AC∩AB1=A,即可证明A1B⊥平面AB1C.(Ⅲ)取B1C中点E,连结DE,AE,可证DE⊥BC,AD⊥BC,从而证明BC⊥平面ADE,进而可证BC⊥AE,即可得解.

试题解析:

)连接四边形为正方形.中点,又中点,的中位线,平面

)由题知

在正方形中,

)存在,取中点,连接

中点,

中点时,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网