题目内容
如图,四棱锥中,,,分别为的中点.(Ⅰ)求证:;(Ⅱ)求证:.
见解析
解析
四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.(Ⅰ) 求证:FG∥平面PDC;(Ⅱ) 求二面角的正切值.
(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.
如图,在圆锥中,已知,⊙O的直径,是的中点,为的中点.(1)证明:平面平面;(2)求二面角的余弦值.
在四棱锥中,,,面,为的中点,.(1)求证:;(2)求证:面;(3)求三棱锥的体积.
设正四棱锥的侧面积为,若.(1)求四棱锥的体积;(2)求直线与平面所成角的大小.
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
如图,已知棱柱的底面是菱形,且面,,,为棱的中点,为线段的中点,(Ⅰ)求证: 面;(Ⅱ)判断直线与平面的位置关系,并证明你的结论;(Ⅲ)求三棱锥的体积.