题目内容
港口北偏东方向的处有一检查站,港口正东方向的处有一轮船,距离检查站为31海里,该轮船从处沿正西方向航行20海里后到达处观测站,已知观测站与检查站距离21海里,问此时轮船离港口还有多远?
C
B
解析
在中,若向量且与共线(1)求角B;(2)若,求的值.
(本小题满分12分)的三个内角所对的边分别为,向量,,且.(Ⅰ)求的大小;(Ⅱ)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.(注:只需要选择一种方案答题,如果用多种方案答题,则按第一方案给分).
(10分) 如图所示,已知、两点的距离为海里,在的北偏东处,甲船自以海里/小时的速度向航行,同时乙船自以海里/小时的速度沿方位角方向航行。问航行几小时两船之间的距离最短?
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE。
(8分)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援?(可能用到的数据,)
(本小题满分12分)如图2,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.
、已知向量,函数,若相邻两对称轴间的距离为。(1)求的值,并求的最大值及相应x的集合;(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积,求边a的长。
(本题满分14分)△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积.