题目内容
在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,AB=PD=a.点E为侧棱PC的中点,又作DF⊥PB交PB于点F.则PB与平面EFD所成角为( )
A.30° | B.45° | C.60° | D.90° |
D
建立空间直角坐标系D—xyz,D为坐标原点.P(0,0,a),B(a,a,0),
=(a,a,-a),又=,
=0+-=0,
所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,
所以PB⊥平面EFD,所以PB与平面EFD所成角为90°,选D.
=(a,a,-a),又=,
=0+-=0,
所以PB⊥DE.由已知DF⊥PB,又DF∩DE=D,
所以PB⊥平面EFD,所以PB与平面EFD所成角为90°,选D.
练习册系列答案
相关题目