题目内容

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

【答案】
(1)证明:连结BC1,取AB中点E′,

∵侧面AA1C1C是菱形,AC1与A1C交于点O,

∴O为AC1的中点,

∵E′是AB的中点,

∴OE′∥BC1

∵OE′平面BCC1B1,BC1平面BCC1B1

∴OE′∥平面BCC1B1

∵OE∥平面BCC1B1

∴E,E′重合,

∴E是AB中点


(2)证明:∵侧面AA1C1C是菱形,

∴AC1⊥A1C,

∵AC1⊥A1B,A1C∩A1B=A1,A1C平面A1BC,A1B平面A1BC,

∴AC1⊥平面A1BC,

∵BC平面A1BC,

∴AC1⊥BC.


【解析】(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网