题目内容

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=sinAsinB.
(1)求角C;
(2)若c=2 ,△ABC的中线CD=2,求△ABC面积S的值.

【答案】
(1)解:∵△ABC的三个内角为A,B,C,且cos2B﹣cos2C﹣sin2A=sinAsinB.

sin2C﹣sinAsinB=sin2A+sin2B,

∴由正弦定理化简得:c2﹣ab=a2+b2

∴cosC=

可得:cosC=

∵0<C<π,

∴C=


(2)解:设∠ADC=α,则∠CDB=π﹣α.

在△ADC中,由余弦定理可得:b2=

在△CDB中,由余弦定理可得:a22= ﹣2× cos(π﹣α),

∴b2+a2=20,

在△ABC中,由余弦定理可得: =b2+a2﹣2ba ,化为:b2+a2+ba=24.

∴ba=4.

∴S△ABC= basin =


【解析】(1)利用余弦定理表示出cosC,把已知等式利用正弦定理化简,整理后代入计算求出cosC的值,即可确定出C的度数.(2)设∠ADC=α,则∠CDB=π﹣α.在△ADC与△ADB中,由余弦定理可得:b2+a2=20,在△ABC中,由余弦定理可得:b2+a2+ba=24.可得ba=4.即可得出.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网