题目内容
已知椭圆,直线l为圆的一条切线,且经过椭圆C的右焦点,直线l的倾斜角为,记椭圆C的离心率为e.
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。
(1)求e的值;
(2)试判定原点关于l的对称点是否在椭圆上,并说明理由。
(1);(2)不在椭圆上
试题分析:(1)由题可得l的方程为 2分)
则 4分
5分
(2)设原点关于l的对称点为,则 9分
,即:其对称点不在椭圆上 12分
点评:熟练运用几何关系转化为椭圆中a,b,c的关系求解离心率,有关点关于直线的对称问题,要注意求解的步骤
练习册系列答案
相关题目