题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与有且只有一个公共点.
(1)求实数的值;
(2)已知点的直角坐标为,若曲线与:(为参数)相交于,两个不同点,求的值.
【答案】(1)(2)
【解析】
(1)求得曲线的平面直角坐标方程和曲线的平面直角坐标方程,再根据直线与圆的位置关系,即可求解.
(2)把直线的参数方程代入曲线的方程,根据参数的几何意义,即可求解.
(1)由曲线的参数方程,消去参数,得曲线的平面直角坐标方程为,
根据极坐标与直角坐标的互化公式,得曲线的平面直角坐标方程为,
曲线与有且只有一个公共点,即与相切,有,或(舍),
综上.
(2),:,曲线的参数方程为(为参数),
知曲线是过定点的直线,把直线的参数方程代入曲线得,
所以.
【题目】随着国内电商的不断发展,快递业也进入了高速发展时期,按照国务院的发展战略布局,以及国家邮政管理总局对快递业的宏观调控,SF快递收取快递费的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,在收费10元的基础上,每超过1kg(不足1kg,按1kg计算)需再收5元.某县SF分代办点将最近承揽的100件包裹的重量统计如下:
重量(单位:kg) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
件数 | 43 | 30 | 15 | 8 | 4 |
对近60天,每天揽件数量统计如下表:
件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
件数 | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 1 | 6 |
以上数据已做近似处理,将频率视为概率.
(1)计算该代办未来5天内不少于2天揽件数在101~300之间的概率;
(2)①估计该代办点对每件包裹收取的快递费的平均值;
②根据以往的经验,该代办点将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前该代办点前台有工作人员3人,每人每天揽件不超过150件,日工资110元.代办点正在考虑是否将前台工作人员裁减1人,试计算裁员前后代办点每日利润的数学期望,若你是决策者,是否裁减工作人员1人?