题目内容
各项均为正数的等比数列
中,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413832783.png)
(Ⅰ)求数列
通项公式;
(Ⅱ)若等差数列
满足
,求数列
的前
项和
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413801439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413832783.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413847496.png)
(Ⅱ)若等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413863521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413879683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413910590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413925297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413941431.png)
(Ⅰ)
;(Ⅱ)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413957513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413972925.png)
试题分析:(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413847496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413847496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032414019435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413832783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413847496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413910590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413925297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413941431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413910590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413863521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413957513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413879683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032414206522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032414237617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413910590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413925297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413941431.png)
试题解析:(Ⅰ)由题意知,q>0,2q+q2=15, 解得q=3(q=-5不合题意舍去) (2分)
∴an=3n-1 (4分)
(Ⅱ)设等差数列{bn}的公差为d,则b1=3,b1+2d=9,∴d=3,
bn=3+3(n-1)=3n (7分)
anbn=n·3n
∴Sn=1×31+2×32+3×33+…+(n-1)×3n-1+n×3n
3Sn=1×32+2×33+…+(n-1)×3n+n×3n+1
两式相减得
-2Sn=31+32+33+…+3n-n×3n+1 (9分)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032414315388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032413972925.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目