题目内容

9.【理】已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设BQ,BP与x轴分别相交于M,N两点.如果QB的斜率与PB的斜率的乘积为-3,则∠MBN的大小等于(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

分析 设直线PQ的方程为:y=kx-1,P(x1,y1),Q(x2,y2),联立直线PQ方程与抛物线方程消掉y得x的二次方程,根据韦达定理及斜率公式可求得kBP+kBQ=0,再由已知kBP•kBQ=-3,可解kBP=$\sqrt{3}$,kBQ=-$\sqrt{3}$,由此可知∠BNM与∠BMN的大小,由三角形内角和定理可得∠MBN.

解答 解:设直线PQ的方程为:y=kx-1,P(x1,y1),Q(x2,y2),
代入抛物线方程,得x2-2pkx+2p=0,△>0,
则x1+x2=2pk,x1x2=2p,kBP=$\frac{{y}_{1}-1}{{x}_{1}}$,kBQ=$\frac{{y}_{2}-1}{{x}_{2}}$,
kBP+kBQ=$\frac{{y}_{1}-1}{{x}_{1}}$+$\frac{{y}_{2}-1}{{x}_{2}}$=$\frac{2k{x}_{1}{x}_{2}-2({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=$\frac{2k•2p-2•2pk}{2p}$=0,即kBP+kBQ=0①
又kBP•kBQ=-3②,
联立①②解得kBP=$\sqrt{3}$,kBQ=-$\sqrt{3}$,
所以∠BNM=$\frac{π}{3}$,∠BMN=$\frac{π}{3}$,
故∠MBN=π-∠BNM-∠BMN=$\frac{π}{3}$.
故选:D.

点评 本题考查直线、抛物线方程及其位置关系等知识,解决本题的关键是通过计算发现直线BP、BQ斜率互为相反数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网