ÌâÄ¿ÄÚÈÝ
£¨2006•ÄϾ©Ò»Ä££©ÒÑÖªº¯Êýf£¨x£©=2+
£®ÊýÁÐ{an}ÖУ¬a1=a£¬an+1=f£¨an£©£¨n¡ÊN*£©£®µ±aÈ¡²»Í¬µÄֵʱ£¬µÃµ½²»Í¬µÄÊýÁÐ{an}£¬Èçµ±a=1ʱ£¬µÃµ½ÎÞÇîÊýÁÐ1£¬3£¬
£¬
£¬¡£»µ±a=-
ʱ£¬µÃµ½ÓÐÇîÊýÁÐ-
£¬0£®
£¨1£©ÇóaµÄÖµ£¬Ê¹µÃa3=0£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãb1=-
£¬bn=f(bn+1)(n¡ÊN*)£¬ÇóÖ¤£º²»ÂÛaÈ¡{bn}ÖеÄÈκÎÊý£¬¶¼¿ÉÒԵõ½Ò»¸öÓÐÇîÊýÁÐ{an}£»
£¨3£©ÇóaµÄÈ¡Öµ·¶Î§£¬Ê¹µÃµ±n¡Ý2ʱ£¬¶¼ÓÐ
£¼an£¼3£®
1 |
x |
7 |
3 |
17 |
7 |
1 |
2 |
1 |
2 |
£¨1£©ÇóaµÄÖµ£¬Ê¹µÃa3=0£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãb1=-
1 |
2 |
£¨3£©ÇóaµÄÈ¡Öµ·¶Î§£¬Ê¹µÃµ±n¡Ý2ʱ£¬¶¼ÓÐ
7 |
3 |
·ÖÎö£º£¨1£©ÀûÓõÝÍƹØϵµÃ³öa3¹ØÓÚaµÄ±í´ïʽ£¬ÔÙÁîa3=0½â³ö¼´¿É£»
£¨2£©ÓÉÌâÖªb1=-
£¬2+
=bn£®²»·ÁÉèaÈ¡bn£¬¶¼¿ÉµÃµ½an=2+
=2+
=b1=-
£¬an+1=0£¬¼´¿É£»
£¨3£©
£¼an£¼3?
£¼2+
£¼3?1£¼an-1£¼3£®
ÓÉÓÚ(
£¬3)?£¨1£¬3£©£¬Ö»ÒªÓÐ
£¼a2£¼3£¬¾ÍÓÐ
£¼an£¼3(n¡Ý3)£®ÀûÓÃ
£¼f(a)£¼3£¬½âµÃ¼´¿É£®
£¨2£©ÓÉÌâÖªb1=-
1 |
2 |
1 |
bn+1 |
1 |
an-1 |
1 |
b2 |
1 |
2 |
£¨3£©
7 |
3 |
7 |
3 |
1 |
an-1 |
ÓÉÓÚ(
7 |
3 |
7 |
3 |
7 |
3 |
7 |
3 |
½â´ð£º½â£º£¨1£©¡ßa1=a£¬an+1=2+
£¬
¡àa2=2+
=
£¬a3=2+
=
£®
Òªa3=0£¬¼´Òªa=-
£®¡à£¬a=-
ʱ£¬a3=0£®
£¨2£©ÓÉÌâÖªb1=-
£¬2+
=bn£®²»·ÁÉèaÈ¡bn£¬
¡àa2=2+
=bn-1£¬a3=2+
=2+
=bn-2£¬
¡£¬
¡àan=2+
=2+
=b1=-
£¬
¡àan+1=0£¬
¡à²»ÂÛaÈ¡{bn}ÖеÄÈκÎÊý£¬¶¼¿ÉÒԵõ½Ò»¸öÓÐÇîÊýÁÐ{an}£®
£¨3£©
£¼an£¼3?
£¼2+
£¼3?1£¼an-1£¼3£®
¡ß(
£¬3)?£¨1£¬3£©£¬¡àÖ»ÒªÓÐ
£¼a2£¼3£¬¾ÍÓÐ
£¼an£¼3(n¡Ý3)£®
ÓÉ
£¬½âµÃ£º
£¬¼´1£¼a£¼3£®
¡àaµÄÈ¡Öµ·¶Î§ÊÇ£¨1£¬3£©£®
1 |
an |
¡àa2=2+
1 |
a1 |
2a+1 |
a |
1 |
a2 |
5a+2 |
2a+1 |
Òªa3=0£¬¼´Òªa=-
2 |
5 |
2 |
5 |
£¨2£©ÓÉÌâÖªb1=-
1 |
2 |
1 |
bn+1 |
¡àa2=2+
1 |
bn |
1 |
a2 |
1 |
bn-1 |
¡£¬
¡àan=2+
1 |
an-1 |
1 |
b2 |
1 |
2 |
¡àan+1=0£¬
¡à²»ÂÛaÈ¡{bn}ÖеÄÈκÎÊý£¬¶¼¿ÉÒԵõ½Ò»¸öÓÐÇîÊýÁÐ{an}£®
£¨3£©
7 |
3 |
7 |
3 |
1 |
an-1 |
¡ß(
7 |
3 |
7 |
3 |
7 |
3 |
ÓÉ
|
|
¡àaµÄÈ¡Öµ·¶Î§ÊÇ£¨1£¬3£©£®
µãÆÀ£ºÕýÈ·Àí½âºÍÓ¦ÓõÝÍƹØϵʽºÍ°ÑÎÊÌâµÈ¼Ûת»¯ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿