题目内容

定义在(0,+∞)上的可导函数f(x)满足f′(x)?x<f(x),且f(2)=0,则
f(x)
x
>0的解集为(  )
A、(0,2)
B、(0,2)∪(2,+∞)
C、(2,+∞)
D、?
分析:令g(x)=
f(x)
x
,由于x•f′(x)<f(x),可得g(x)=
xf(x)-f(x)
x2
<0
,因此g(x)在(0,+∞)上单调递减,再利用g(2)=f(2)=0,即可得出.
解答:解:令g(x)=
f(x)
x
,∵x•f′(x)<f(x),∴x•f′(x)-f(x)<0.
g(x)=
xf(x)-f(x)
x2
<0

∴g(x)在(0,+∞)上单调递减,
∵f(2)=0,即g(2)=0.
∴g(x)=
f(x)
x
>0的解集是0<x<2.
故选:A.
点评:本题考查了通过构造函数利用导数研究其单调性解不等式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网