题目内容
【题目】已知椭圆C:(a>b>0)的离心率为,且过点(1,).
(1)求椭圆C的方程;
(2)设与圆O:x2+y2=相切的直线l交椭圆C于A,B两点,求△OAB面积的最大值,及取得最大值时直线l的方程.
【答案】(1)(2)
【解析】
(1)利用离心率把椭圆方程设成:,代入椭圆上的点可得椭圆方程.
(2)设直线为,,联立直线方程和椭圆方程并消元得到,利用韦达定理把面积表示关于的函数,利用基本不等式求面积的最大值,注意讨论直线的斜率不存在情形.
(1)由题意可得,,故,,
所以椭圆方程为.
将点代入椭圆方程,可得,故,
即有椭圆的方程为.
(2)①当不存在时,时,可得,
;
②当存在时,设直线为,,
将直线代入椭圆方程可得,
,,
由直线与圆相切,可得,
即有,
又
,
当且仅当9即时等号成立,
此时,
即有面积的最大值为,此时直线方程.
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
【题目】2017年被称为“新高考元年”,随着上海、浙江两地顺利实施“语数外+3”新高考方案,新一轮的高考改革还将继续在全国推进.辽宁地区也将于2020年开启新高考模式,今年秋季入学的高一新生将面临从物理、化学、生物、政治、历史、地理等6科中任选三科(共20种选法)作为自己将来高考“语数外+3”新高考方案中的“3”.某地区为了顺利迎接新高考改革,在某学校理科班的200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程组合选择一种学习.模拟选课数据统计如下表:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
组合学科 | 物化生 | 物化政 | 物化历 | 物化地 | 物生政 | 物生历 | 物生地 |
人数 | 20人 | 5人 | 10人 | 10人 | 10人 | 15人 | 10人 |
序号 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
组合学科 | 物政历 | 物政地 | 物历地 | 化生政 | 化生历 | 化生地 | 化政历 |
人数 | 5人 | 0人 | 5人 | …… | 40人 | …… | …… |
序号 | 15 | 16 | 17 | 18 | 19 | 20 | |
组合学科 | 化政地 | 化历地 | 生政历 | 生政地 | 生历地 | 政历地 | 总计 |
人数 | …… | …… | …… | …… | …… | …… | 200人 |
为了解学生成绩与学生模拟选课之间的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析。
(1)样本中选择组合6号“物生历”的有多少人?样本中同时选择学习物理和历史的有多少人?
(2)从样本选择学习物理且学习历史的学生中随机抽取3人,求这3人中至少有2人还要学习生物的概率。