题目内容
【题目】已知 .
(1)若函数的值域为,求实数的取值范围;
(2)若函数在区间上是减函数,求实数的取值范围.
【答案】(1) 或;(2).
【解析】试题分析:(1)函数的值域为,即是不等式的解集为,利用二次函数性质可得判别式小于零即可得结果;(2)根据区间即是函数定义域的子集又是二次函数减区间的子集,列不等式组求解即可.
试题解析:(1)f(x)值域为R,令g(x)=x2﹣mx﹣m, 则g(x)取遍所有的正数
即△=m2+4m≥0
∴m≥0或m≤﹣4;
(2)由题意知 .
【方法点晴】本题主要考查函数的定义域、值域及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式或恒成立问题求参数范围,本题(2)是利用方法 ① 求解的.
练习册系列答案
相关题目