题目内容
【题目】知 =(2λsinx,sinx+cosx), =( cosx,λ(sinx﹣cosx))(λ>0),函数f(x)= 的最大值为2.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,cosA= ,若f(A)﹣m>0恒成立,求实数m的取值范围.
【答案】
(1)解:函数 = λsin2x﹣λcos2x
=2λ( sin2x﹣ cos2x)=2λsin(2x﹣ ),
因为f(x)的最大值为2,所以解得λ=1,则 .
由 ,
可得: , ,
所以函数f(x)的单调减区间为 ,k∈Z.
(2)解:由 .可得2b2﹣ab=b2+c2﹣a2,
即b2+a2﹣c2=ab,解得 ,即 .
因为 ,∴ , .
因为 恒成立,则 恒成立,即m≤﹣1.
【解析】(1)利用两个向量的数量积公式,三角恒等变换,求得f(x)的解析式,再利用正弦函数的单调性,求函数f(x)的单调递减区间.(2)利用余弦定理求得cosC的值,可得C的值,再利用正弦函数的定义域和值域,求得f(A)的最小值,可得m的范围.
【考点精析】掌握余弦定理的定义是解答本题的根本,需要知道余弦定理:;;.
【题目】2016世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选.美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:
赞成“自助游” | 不赞成“自助游” | 合计 | |
男性 | 30 | ||
女性 | 10 | ||
合计 | 100 |
(1)若在100这人中,按性别分层抽取一个容量为20的样本,女性应抽11人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过0.05前提下,认为赞成“自助游”是与性别有关系?
(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取3人赠送精美纪念品,记这3人中赞成“自助游”人数为X,求X的分布列和数学期望. 附:K2=
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |