题目内容
设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=1 |
12 |
1 |
6 |
3 |
2 |
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为
分析:(Ⅰ)函数在区间(-1,3)上为“凸函数”,所以f″(x)<0,即对函数y=f(x)二次求导,转化为不等式问题解决即可;
(Ⅱ)利用函数总为“凸函数”,即f″(x)<0恒成立,转化为不等式恒成立问题,讨论解不等式即可.
(Ⅱ)利用函数总为“凸函数”,即f″(x)<0恒成立,转化为不等式恒成立问题,讨论解不等式即可.
解答:解:由函数 f(x)=
x4-
mx3-
x2得,f″(x)=x2-mx-3(3分)
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则有f″(x)=x2-mx-3<0在区间(-1,3)上恒成立,
由二次函数的图象,当且仅当
,
即
?m=2.(7分)
(Ⅱ)当|m|≤2时,f″(x)=x2-mx-3<0恒成立?当|m|≤2时,mx>x2-3恒成立.(8分)
当x=0时,f″(x)=-3<0显然成立.(9分)
当x>0,x-
<m
∵m的最小值是-2.
∴x-
<-2.
从而解得0<x<1(11分)
当x<0,x-
>m
∵m的最大值是2,∴x-
>2,
从而解得-1<x<0.(13分)
综上可得-1<x<1,从而(b-a)max=1-(-1)=2(14分)
故答案为:2;2.
1 |
12 |
1 |
6 |
3 |
2 |
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则有f″(x)=x2-mx-3<0在区间(-1,3)上恒成立,
由二次函数的图象,当且仅当
|
即
|
(Ⅱ)当|m|≤2时,f″(x)=x2-mx-3<0恒成立?当|m|≤2时,mx>x2-3恒成立.(8分)
当x=0时,f″(x)=-3<0显然成立.(9分)
当x>0,x-
3 |
x |
∵m的最小值是-2.
∴x-
3 |
x |
从而解得0<x<1(11分)
当x<0,x-
3 |
x |
∵m的最大值是2,∴x-
3 |
x |
从而解得-1<x<0.(13分)
综上可得-1<x<1,从而(b-a)max=1-(-1)=2(14分)
故答案为:2;2.
点评:本题考查函数的导数与不等式恒成立问题的解法,关键是要理解题目所给信息(新定义),考查知识迁移与转化能力,属于中档题.
练习册系列答案
相关题目
设函数y=f(x)在(-∞,+∞)内有定义.对于给定的正数K,定义函数 fk(x)=
,取函数f(x)=2-x-e-x.若对任意的x∈(+∞,-∞),恒有fk(x)=f(x),则( )
|
A、K的最大值为2 |
B、K的最小值为2 |
C、K的最大值为1 |
D、K的最小值为1 |