题目内容

设函数y=f(x)在(a,b)上的导数为f′(x),f′(x)在(a,b)上的导数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.若函数f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
为区间(-1,3)上的“凸函数”,则m=
2
2
分析:先求出f″(x),由题意可知f″<0,即x2-mx-3<0在(-1,3)上恒成立,则
(-1)2-m(-1)-3≤0
32-3m-3≤0
,解出即可.
解答:解:f′(x)=
1
3
x3-
1
2
mx2-3x
,f″(x)=x2-mx-3,
因为f(x)为区间(-1,3)上的“凸函数”,
所以f″<0恒成立,即x2-mx-3<0在(-1,3)上恒成立,
(-1)2-m(-1)-3≤0
32-3m-3≤0
,解得m=2,
故答案为:2.
点评:本题考查导数在函数中的应用,考查学生对新问题的理解分析能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网