题目内容
20.化简计算$(1){\;}_{\;}4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}÷(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$
$(2){\;}_{\;}{(\frac{2}{3})^{-2}}+{(1-\sqrt{2})^0}-{(3\frac{3}{8})^{\frac{2}{3}}}+\sqrt{{{(3-π)}^2}}$.
分析 (1)(2)利用指数幂的运算性质即可得出.
解答 解:(1)原式=$(-4×\frac{3}{2})$${a}^{\frac{2}{3}-(-\frac{1}{3})}$${b}^{-\frac{1}{3}-(-\frac{1}{3})}$=-6a.
(2)原式=$\frac{9}{4}$+1-($\frac{3}{2}$)2+π-3=π-2.
点评 本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
10.已知$\vec a=({-3,2}),\vec b=({-1,0})$,向量λ$\vec a+\vec b$与$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为( )
A. | $\frac{1}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{7}$ | D. | $-\frac{1}{7}$ |
8.以下命题正确的个数是( )
①命题“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”.
②命题“若x2+x-12=0,则x=4”的逆否命题为“若x≠4,则x2+x-12≠0”.
③若p∧q为假命题,则p、q均为假命题.
①命题“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”.
②命题“若x2+x-12=0,则x=4”的逆否命题为“若x≠4,则x2+x-12≠0”.
③若p∧q为假命题,则p、q均为假命题.
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |