题目内容
【题目】已知函数.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
【答案】(Ⅰ)的最小值为,最小正周期为.
(Ⅱ)
【解析】
本试题主要是考查了三角函数的化简和解三角形的综合运用。
(1)利用二倍角的正弦和余弦公式化简为单一三角函数,得到周期
(2)利用第一问的结论,得到f(C)=sin-1=0,然后利用三角方程得到角C的值。然后利用正弦定理得到b=2a,然后结合余弦定理求解得到a,b的值。
解 (1)f(x)=sinxcosx-cos2x-=sin 2x-cos 2x-1=sin-1,
∴f(x)min=-2,最小正周期为π.
(2)∵f(C)=sin-1=0,∴sin=1,∵0<C<π,-<2C-<,
∴2C-=,∴C=. ∵m与n共线, ∴sinB-2sinA=0,
由正弦定理=, 得b=2a,①
∵c=3,由余弦定理,得9=a2+b2-2abcos,②
由①②得:a=,b=2.
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
网购金额(单位:千元) | 频数 | 频率 | 网购金额(单位:千元) | 频数 | 频率 | |
[0,0.5) | 3 | 0.05 | [1.5,2) | 15 | 0.25 | |
[0.5,1) | [2,2.5) | 18 | 0.30 | |||
[1,1.5) | 9 | 0.15 | [2.5,3] |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定,,,的值,并补全频率分布直方图;
(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.