题目内容
【题目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范围.
【答案】
(1)解:由集合B中的不等式x2﹣2x﹣15≤0,
因式分解得:(x+3)(x﹣5)≤0,
可化为: 或 ,
解得:﹣3≤x≤5,
∴B={x|﹣3≤x≤5},又A={x|x<﹣2或3<x≤4},
则A∩B={x|﹣3≤x<﹣2或3<x≤4}
(2)解:∵B∩C=B,
∴BC,
则a≤﹣3
【解析】(1)把集合B中的一元二次不等式的左边分解因式,根据两数相乘异号得负的取符号法则转化为两个不等式组,求出两不等式组解集的并集得到原不等式的解集,确定出集合B,找出A和B的公共部分即可得到两集合的交集;(2)由B和C的交集为集合B,得到集合B是集合C的子集,根据集合B及C中不等式解集的特点,列出关于a的不等式,得到a的范围.
【考点精析】关于本题考查的集合的交集运算,需要了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能得出正确答案.
【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于为合格品,小于为次品.现随机抽取这种芯片共件进行检测,检测结果统计如表:
测试指标 | |||||
芯片数量(件) |
已知生产一件芯片,若是合格品可盈利元,若是次品则亏损元.
(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产件芯片所获得的利润不少于元的概率.
(Ⅱ)记为生产件芯片所得的总利润,求随机变量的分布列和数学期望
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).