题目内容
在计算“1×2+2×3+…n(n+1)”时,先改写第k项:
k(k+1)=
[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=
(1×2×3-0×1×2),2×3=
(2×3×4-1×2×3),..
n(n+1)=
[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=
n(n+1)(n+2)
(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.
k(k+1)=
1 |
3 |
1 |
3 |
1 |
3 |
n(n+1)=
1 |
3 |
1 |
3 |
(1)类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”的结果;
(2)试用数学归纳法证明你得到的等式.
分析:(1)根据已知中给出的在计算“1×2+2×3+…+n(n+1)”时化简思路,对1×2×3+2×3×4+…+n(n+1)(n+2)的计算结果进行化简,处理的方法就是类比k(k+1)=
[k(k+1)(k+2)-(k-1)k(k+1)],将n(n+1)(n+2)进行合理的分解.
(2)直接利用数学归纳法的证明步骤,先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可..
1 |
3 |
(2)直接利用数学归纳法的证明步骤,先证明n=1时,结论成立,再设当n=k(k∈N*)时,等式成立,利用假设证明n=k+1时,等式成立即可..
解答:解:(1)∵n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3=
(1×2×3×4-0×1×2×3)
2×3×4=
(2×3×4×5-1×2×3×4)
…
n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n×(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
n(n+1)(n+2)(n+3)
①当n=1时,左边=1×2×3,右边=
×1×2×3×4=1×2×3,左边=右边,等式成立.
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
.
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
+(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
+1)
=
=
.
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.
1 |
4 |
∴1×2×3=
1 |
4 |
2×3×4=
1 |
4 |
…
n(n+1)(n+2)=
1 |
4 |
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
1 |
4 |
1 |
4 |
(2)利用数学归纳法证:1×2×3+2×3×4+…+n(n+1)(n+2)=
1 |
4 |
①当n=1时,左边=1×2×3,右边=
1 |
4 |
②设当n=k(k∈N*)时,等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3) |
4 |
则当n=k+1时,
左边=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3) |
4 |
=(k+1)(k+2)(k+3)(
k |
4 |
=
(k+1)(k+2)(k+3)(K+4) |
4 |
=
(k+1)(k+1+1)(k+1+2)(k+1+3) |
4 |
∴n=k+1时,等式成立.
由①、②可知,原等式对于任意n∈N*成立.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)考查数学归纳法证明等式问题,证题的关键是利用归纳假设证明n=k+1时,等式成立,属于中档题.
练习册系列答案
相关题目