题目内容

证明:
sin2α+1
1+cos2α+sin2α
=
1
2
tanα+
1
2
分析:直接利用二倍角的正弦、余弦公式化简等式的左边,通过配方、约分,化简出要证的右边即可.
解答:证:左边=
2sinα•cosα+sin2 α+cos2 α
2cos2 α+2sinαcosα

=
(sinα+cosα)2
2cosα(cosα+sinα)

=
sinα+cosα
2cosα

=
1
2
tanα+
1
2

=右边.
所以等式成立.
点评:本题是基础题,考查三角恒等式的证明,二倍角的正弦、余弦公式的应用,三角函数的平方关系的应用,是本题的关键,注意恒等式的证明方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网