ÌâÄ¿ÄÚÈÝ
É躯Êýy=f£¨x£©=x2-bx+1£¬ÇÒy=f£¨x+1£©µÄͼÏó¹ØÓÚÖ±Ïßx=-1¶Ô³Æ£®ÓÖy=f£¨x£©µÄͼÏóÓëÒ»´Îº¯Êýg£¨x£©=kx+2£¨k£¼0£©µÄͼÏó½»ÓÚÁ½µãA¡¢B£¬ÇÒ|AB=
|£®
£¨1£©Çób¼°kµÄÖµ£»
£¨2£©¼Çº¯ÊýF£¨x£©=f£¨x£©g£¨x£©£¬ÇóF£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×îСֵ£»
£¨3£©Èôsin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1£¬ÊÔ¸ù¾ÝÉÏÊö£¨1£©¡¢£¨2£©µÄ½áÂÛÖ¤Ã÷£º
+
+
¡Ü
£®
10 |
£¨1£©Çób¼°kµÄÖµ£»
£¨2£©¼Çº¯ÊýF£¨x£©=f£¨x£©g£¨x£©£¬ÇóF£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×îСֵ£»
£¨3£©Èôsin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1£¬ÊÔ¸ù¾ÝÉÏÊö£¨1£©¡¢£¨2£©µÄ½áÂÛÖ¤Ã÷£º
sin¦Á |
1+sin2¦Á |
sin¦Â |
1+sin2¦Â |
sin¦Ã |
1+sin2¦Ã |
9 |
10 |
·ÖÎö£º£¨1£©ÒÑÖªº¯Êýy=f£¨x£©=x2-bx+1£¬¸ù¾Ýżº¯ÊýµÄÐÔÖÊ£¬f£¨-x£©=f£¨x£©£¬Çó³öbÖµ£¬Éè·½³Ìx2+1=kx+2µÄÁ½¸ùΪx1£¬x2£¬ÓÉ|AB|=
£¬¿ÉÒÔÇó³ökÖµ£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬½«f£¨x£©ºÍg£¨x£©´úÈëF£¨x£©£¬¶ÔF£¨x£©½øÐÐÇóµ¼£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµÎÊÌ⣬´Ó¶øÇó½â£»
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
ºã³ÉÁ¢£¬¿ÉÒÔת»¯Îª
¡Ü
£¨2x-x2£©£¬ÀûÓô˲»µÈʽ½øÐзÅËõ£¬´Ó¶ø½øÐÐÖ¤Ã÷£»
10 |
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬½«f£¨x£©ºÍg£¨x£©´úÈëF£¨x£©£¬¶ÔF£¨x£©½øÐÐÇóµ¼£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµÎÊÌ⣬´Ó¶øÇó½â£»
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
50 |
27 |
x |
1+x2 |
27 |
50 |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬y=f£¨x£©=x2-bx+1Ϊżº¯Êý£¬ËùÒÔb=0£» ¡£¨2·Ö£©
Éè·½³Ìx2+1=kx+2µÄÁ½¸ùΪx1£¬x2£¬ÓÉ|AB|=
µÃ£º
|x1-x2|=
=
=
½âµÃk=-1£» ¡£¨4·Ö£©
£¨2£©ÓÉ£¨1£©Öªf£¨x£©=x2+1£¬g£¨x£©=-x+2£¬¹ÊF£¨x£©=f£¨x£©g£¨x£©=-x3+2x2-x+2£¬
ÓÉF¡ä£¨x£©=-3x2+4x-1=0£¬½âµÃx1=1£¬x2=
£¬¡£¨6·Ö£©
ÁбíÈçÏ£º
ËùÒÔ£¬º¯ÊýF£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×îСֵΪf£¨
£©=
£» ¡£¨10·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
ºã³ÉÁ¢£¬
ËùÒÔ
¡Ü
£¨2-x£©£¬ÓÐ
¡Ü
£¨2x-x2£©£¬¡£¨12·Ö£©
µ±sin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1ʱ£¬
+
+
¡Ü
[2£¨sin¦Á+sin¦Â+sin¦Ã£©-£¨sin2¦Á+sin2¦Â+sin2¦Ã£©
=
[2-(sin2¦Á+sin2¦Â+sin2¦Ã)] ¡£¨14·Ö£©
ÓÖ1=£¨sin¦Á+sin¦Â+sin¦Ã£©2¡Ü3£¨sin2¦Á+sin2¦Â+sin2¦Ã£©£¬
¡àsin2¦Á+sin2¦Â+sin2¦Ã¡Ý
£¬
¡à
+
+
¡Ü
£¨2-
£©=
£¬
µ±ÇÒ½öµ±sin¦Á=sin¦Â=sin¦Ã=
ʱ£¬µÈºÅ³ÉÁ¢£®¡£¨16·Ö£©
Éè·½³Ìx2+1=kx+2µÄÁ½¸ùΪx1£¬x2£¬ÓÉ|AB|=
10 |
1+k2 |
1+k2 |
(x1+x2)2-4x1x2 |
(1+k2)(k2+4) |
10 |
½âµÃk=-1£» ¡£¨4·Ö£©
£¨2£©ÓÉ£¨1£©Öªf£¨x£©=x2+1£¬g£¨x£©=-x+2£¬¹ÊF£¨x£©=f£¨x£©g£¨x£©=-x3+2x2-x+2£¬
ÓÉF¡ä£¨x£©=-3x2+4x-1=0£¬½âµÃx1=1£¬x2=
1 |
3 |
ÁбíÈçÏ£º
x | 0 | £¨0£¬
|
|
£¨
|
1 | ||||||
F¡ä£¨x£© | - | + | |||||||||
F£¨x£© | 2 | ¼õº¯Êý |
|
Ôöº¯Êý | 2 |
1 |
3 |
50 |
27 |
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
50 |
27 |
ËùÒÔ
1 |
1+x2 |
27 |
50 |
x |
1+x2 |
27 |
50 |
µ±sin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1ʱ£¬
sin¦Á |
1+sin2¦Á |
sin¦Â |
1+sin2¦Â |
sin¦Ã |
1+sin2¦Ã |
27 |
50 |
=
27 |
50 |
ÓÖ1=£¨sin¦Á+sin¦Â+sin¦Ã£©2¡Ü3£¨sin2¦Á+sin2¦Â+sin2¦Ã£©£¬
¡àsin2¦Á+sin2¦Â+sin2¦Ã¡Ý
1 |
3 |
¡à
sin¦Á |
1+sin2¦Á |
sin¦Â |
1+sin2¦Â |
sin¦Ã |
1+sin2¦Ã |
27 |
50 |
1 |
3 |
9 |
10 |
µ±ÇÒ½öµ±sin¦Á=sin¦Â=sin¦Ã=
1 |
3 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼°Æä×îÖµÎÊÌ⣬½âÌâµÄ¹ý³ÌÖÐÓõ½ÁËת»¯µÄ˼Ï룬µÚÈýÎÊÄѶȱȽϴó£¬ÐèÒªÓõ½Ç°Á½ÎʵĽáÂÛ£¬ÊÇÒ»µÀÄÑÌ⣬ͬѧÃÇÒªÈÏÕæ×öºÃ±Ê¼Ç£»
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿