题目内容

5.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求$\frac{sinB}{sinC}$;
(2)若AD=1,DC=$\frac{\sqrt{2}}{2}$,求BD和AC的长.

分析 (1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=$\frac{AD×sin∠BAD}{BD}$,sin∠C=$\frac{AD×sin∠DAC}{DC}$,从而得解$\frac{sin∠B}{sin∠C}$.
(2)由(1)可求BD=$\sqrt{2}$.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.

解答 解:(1)如图,过A作AE⊥BC于E,
∵$\frac{{S}_{△ABD}}{{S}_{△ADC}}$=$\frac{\frac{1}{2}BD×AE}{\frac{1}{2}DC×AE}$=2
∴BD=2DC,
∵AD平分∠BAC
∴∠BAD=∠DAC
在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠B}$,∴sin∠B=$\frac{AD×sin∠BAD}{BD}$
在△ADC中,$\frac{DC}{sin∠DAC}$=$\frac{AD}{sin∠C}$,∴sin∠C=$\frac{AD×sin∠DAC}{DC}$;
∴$\frac{sin∠B}{sin∠C}$=$\frac{DC}{BD}$=$\frac{1}{2}$.…6分
(2)由(1)知,BD=2DC=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$.
过D作DM⊥AB于M,作DN⊥AC于N,
∵AD平分∠BAC,
∴DM=DN,
∴$\frac{{S}_{△ABD}}{{S}_{△ADC}}$=$\frac{\frac{1}{2}AB×DM}{\frac{1}{2}AC×DN}$=2,
∴AB=2AC,
令AC=x,则AB=2x,
∵∠BAD=∠DAC,
∴cos∠BAD=cos∠DAC,
∴由余弦定理可得:$\frac{(2x)^{2}+{1}^{2}-(\sqrt{2})^{2}}{2×2x×1}$=$\frac{{x}^{2}+{1}^{2}-(\frac{\sqrt{2}}{2})^{2}}{2×x×1}$,
∴x=1,
∴AC=1,
∴BD的长为$\sqrt{2}$,AC的长为1.

点评 本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网